
TWMS J. Pure Appl. Math., V.12, N.2, 2021, pp.243-253

ASYMPTOTIC REDUCTION OF SOLUTION SPACE DIMENSION FOR

DYNAMICAL SYSTEMS

PAVEL S. PANKOV1, ZHUMAGUL K. ZHEENTAEVA2, TALEH SHIRINOV3

Abstract. We introduce the equivalence relation in the solution space to initial value prob-

lem for dynamical systems: the distance between their trajectories approaches zero with time

approaching infinity. The phenomenon ”the dimension of the quotient space is less than one of

the initial spaces” is named ”asymptotic reduction of solution space dimension”. We demon-

strate that various well-known results including existence of special solutions of delay differential

equations with small argument can be presented uniformly by this method. These results are

extended to operator-difference equations and improved by the new method of splitting spaces.

Some results are further verified by computations.
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1. Introduction

One of the main problems in the theory of dynamical systems is the problem of solution

behavior of IVP as time approaches infinity. Many mathematical methods were developed

to solve this problem including the theory of stability, the method of characteristic equations

for autonomous and periodic dynamic systems, method of special solutions for delay differential

equations. Various sufficient conditions were obtained to provide some types of solution behavior.

Various definitions and notations were introduced for each.

We introduce the new definitions to unify ones proposed earlier, to present previous and to

obtain new results.

Remark 1.1. With wide spread of computers the following auxiliary methods appeared:

exact (if possible) or approximate solving of standard problems by mathematical software pack-

ages we used them [8]; conducting of experiments to hypothesize (we used it [11]); validating

computations if arising conditions are too complicated to obtain explicit estimations by hand

(see below Section 6).

Section 2 contains definitions of asymptotic equivalence, λ-exponential asymptotic equivalence

and the phenomenon of asymptotic dimension reduction in various types of solution spaces to

dynamical systems.

Section 3 demonstrates that the introduced definitions unify some known results on asymptotic

behavior of solutions to dynamical systems and are more general than ones proposed earlier.
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Section 4 classifies and describes special properties of solutions of delay differential equations:

existence of special (slowly varying) solutions; asymptotical approximation of all solutions by

special solutions.

Section 5 introduces classes of IVP for operator difference equations using the method of

splitting spaces and defines conditions for special properties of their solutions.

Section 6 contains new results on asymptotic solution behavior of IVP for delay differential

equations using the results of Section 5.

2. Main definitions

We consider the dynamical systems as equations for functions depending on time satisfying

the property ”the present depends on the past only” (differential equations, delay differential

equations, Volterra integral equations of the second kind, difference equations etc.). ”Ordinary”

equations in more general form can be presented as follows (we are restricted to existence and

uniqueness of solution of IVP).

Remark 2.1.. There are many definitions of dynamical systems given not as ”equations”

but as ”sets of solutions” or as ”flows” in the references. Our approach is close, for instance, to

[1].

Definition 2.1. A dynamical system is a tuple consisting of

a number h ≥ 0 [index of delay];

a totally ordered set Λ of real numbers with the least element but without the greatest one

[domain of functions]: Λ = Rh := [−h,∞) or Λ = N0 := {0, 1, 2, ...};
a topological space Z [range of functions];

a set Φ of functions [−h, 0] → Z [initial conditions]; if h = 0 then Φ = Z;

a function W (t, φ) : Λ × Φ → Z such that its restriction on [−h, 0] equals φ [solutions of

initial value problems].

If Λ = Rh then W (t, φ) is supposed to be continuous with respect to t.

As usually, if Z is a linear space and W (t, α1φ1 + α2φ2) ≡ α1W (t, φ1) + α2W (t, φ2) then the

dynamical system is said to be linear.

If h > 0 then we have equations with bounded delay; if Λ = N0 then the term ”difference

equations” is used.

We will consider the following classes of spaces with their dimensions:

1-spaces: Z = R; dimension = 1;

d-spaces: Φ = Z = Rd, d ∈ N := {1, 2, ...}; dimension = d;

N-spaces: Z is a normed linear space with norm || · ||Z ; dimension (finite or infinite) is the

number of elements in the basis;

M-spaces: Z is a metric space with metric ρZ(·, ·); the inductive Ind-dimension is used;

U-spaces: Z is a uniform space with set of entourages ΥZ ; Ind-dimension is used;

T-spaces: Z is a topological space; Ind-dimension is used.

If h = 0 then dimension of Φ equals one of Z.

We give the well-known definitions in our notations for comparison:

Definition 2.2. [3] (for d-Spaces):

2.1. If for any φ0 ∈ Φ

(∀ε > 0)(∃δ > 0)((||φ− φ0|| < δ) ⇒ (∀t ∈ Λ)(||W (t, φ)−W (t, φ0)|| < ε)) (1)

then the solution W (t, φ0) is said to be stable.

2.2. If additionally lim{||W (t, φ)−W (t, φ0)|| : t → ∞} = 0
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then the solution W (t, φ0) is said to be asymptotically stable.

2.3. If additionally (∃λ > 0)(∀φ)(∃c > 0)(||W (t, φ)−W (t, φ0)|| ≤ c exp(−λt))

then the solution W (t, φ0) is said to be asymptotically exponentially stable [we will call it

”λ-stable”].

2.4. If there exists such d∗-dimensional domain Φ′ ⊂ Φ,Φ′ ̸= Φ, d∗ ≤ d that

(∀φ0 ∈ Φ′)(∀ε > 0)(∃δ > 0)(∀φ ∈ Φ)
(
(||φ− φ0|| < δ) ⇒ (∀t ∈ Λ)(||W (t, φ)−W (t, φ0)|| < ε)

)
then the solution W (t, φ0) is said to be conditionally stable [we will also add: (d ↘ d∗)]; if

also (1) fulfils then the solution W (t, φ0) is said to be asymptotically conditionally stable.

These definitions are naturally extended to N-spaces, M-spaces and, except ”λ-stable”, to

U-spaces. They can be extended to T-spaces only in the case W (t, φ0) ≡ const = φ0 because

neighbors of different points are incomparable.

We propose more general definitions.

Definition 2.3. The following equivalence is said to be asymptotic equivalence (λ-exponential

asymptotic equivalence, λ > 0 respectively) in the solution space Sw.

2.1. For N-Spaces:

(φ1 ∼ φ2) ⇔ (lim{||W (t, φ1)−W (t, φ2)||Z : t → ∞} = 0);

(φ1 ∼λ φ2) ⇔ (∃γ > 0)(∀t ∈ Λ)(||W (t, φ1)−W (t, φ2)||Z ≤ γ exp(−λt))

respectively.

2.2. For M-Spaces:

(φ1 ∼ φ2) ⇔ (lim{ρZ(W (t, φ1),W (t, φ2)) : t → ∞} = 0);

(φ1 ∼λ φ2) ⇔ (∃γ > 0)(∀t ∈ Λ)(ρZ(W (t, φ1),W (t, φ2)) ≤ γ exp(−λt))

respectively.

2.3. For U-Spaces:

(φ1 ∼ φ2) ⇔ ((∀V ∈ ΥZ)(∃t1 ∈ Λ)(∀t > t1)((W (t, φ1),W (t, φ2)) ∈ V )).

(λ-exponential asymptotic equivalence cannot be defined in such general spaces).

2.4. For T-Spaces an additional construction is necessary. Let F be a filter of sets of Z such

that (probably, except one point) (∀z ∈ Z)(∃V ∈ F )(z /∈ V ).

The following equivalence is said to be asymptotic equivalence with respect to the filter F :

(φ1 ∼F φ2) ⇔ ((∀V ∈ F )(∃t1 ∈ Λ)(∀t > t1)((W (t, φ1) ∈ V ) ∧ (W (t, φ2)) ∈ V )).

Remark 2.2. In some papers the term ”asymptotic equivalence” is understood as proximity

between solutions of different dynamical systems with the same space Φ. For instance [2], in our

notations (W1(t, φ) ≈ W2(t, φ)) ⇔ (lim{||W1(t, φ)−W2(t, φ)||Z : t → ∞} = 0).

Definition 2.4. The quotient space Φ∗ := Φ/ ∼ of the space Φ by the asymptotic equivalence

is said to be an asymptotic quotient space; respectively, the quotient space Φ∗
λ = Φ/ ∼λ of the

space Φ by the λ-exponential asymptotic equivalence is said to be λ-exponential asymptotic

quotient space.

Obviously, linear structures of spaces Φ are transferred to quotient spaces Φ∗ in a natural

way. On the contrary, metric and uniform structures are not transferred in general case.

Example 2.1. d-Spaces, d = 2 : Φ = Z = {(φ1, φ2)} = R2,

W (t, φ1, φ2) = (φ1 · exp(−t) + (1− exp(−t)) · cos(φ2
2), φ2 · exp(−t)).

We have lim{W (t, φ1, φ2) : t → ∞} = (cos(φ2
2), 0). Hence, there are two different classes of

asymptotic equivalence in Φ∗:

C1 := {(φ1 ∈ R, φ2 = ±
√
2kπ) : k ∈ N0}, lim{W (t, φ1, φ2) : t → ∞} = (1, 0);
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C2 := {(φ1 ∈ R, φ2 = ±
√
2kπ + π) : k ∈ N0}, lim{W (t, φ1, φ2) : t → ∞} = (−1, 0).

The difference |
√
2kπ + π−

√
2kπ| is arbitrary small for arbitrary large k, i. e. the Hausdorff

distance between classes C1 and C2 equals zero. Hence, there cannot be any natural metric in

the quotient space Φ∗.

Definition 2.5. If the dimension d∗ of Φ∗ (of Φ∗
λ respectively) is less than one d of Φ then it is

said to be the phenomenon of asymptotic reduction of dimension (PARD or PARDλ respectively

(d ↘ d∗)) of space of solutions of initial value problems for a dynamical system.

If PARDλ occurs and there exists such λ1 > λ that PARDλ1 occurs for Φ∗
λ then multiple

PARDλ,λ1 occurs.

3. Review of some known results with respect to new definitions

Lemma 3.1. For d-Spaces: If the dynamical system is linear and h = 0 then PARD(d ↘ 0)

implies asymptotic stability of the zero solution.

Proof. Let {e1, ..., ed} be a basis in Z. As all norms in Rd are equivalent, we will use the

norm ||
∑d

j=1 xjej ||0 := max{|xj | : j = 1, ..., d}.
Choose a small number ε > 0. Due to Definition 2.3 and linearity,

(∀j ∈ {1, ..., d})(lim{||W (t, ej)− 0||0 : t → ∞} = 0).

Denote Mj := sup{||W (t, ej)||0 : t ∈ Λ}, j = 1, ..., d.

If Λ = R0 then Mj < ∞ because W (t, ej) is continuous.

if Λ = N0 then Mj < ∞ because ||W (t, ej)||0 > 1 only for finite number of values of t.

Let the norm of an initial condition φ̄ be sufficiently small:

||φ̄||0 < ε/
∑d

i=1Mi.

Extending φ̄ in the basis we have

φ̄ ≡
∑d

j=1 x̄jej , ||φ̄||0 = {max |x̄j | : j = 1, ..., d}.
Hence, for all t ∈ Λ:

||W (t, φ̄)||0 = ||W (t,
∑d

j=1 x̄jej)||0 ≤
∑d

j=1 ||W (t, x̄jej)||0 =
d∑

j=1
|x̄j | · ||W (t, ej)||0

≤ {max |x̄j | : j = 1, ..., d}
d∑

j=1
||W (t, ej)||0 ≤ (ε/

d∑
i=1

Mi)
d∑

j=1
Mj = ε.

The lemma is proven.

This result is not extended to N-spaces.

Example 3.1. Let Φ = Z be the set of finite sequences (or ”infinite sequences with finite

number of non-zero members”) of real numbers with the basis {e1, ..., ed, ...} and the norm || · ||0.
Consider the differential equation

w′(t) = diag{(j − 2t) : j ∈ N}w(t), t ∈ R0.

Its general solution is W (t,
d∑

j=1
xjej) :=

d∑
j=1

xj exp(jt− t2)ej with arbitrary d.

Then ||W (t,
d∑

j=1
xjej)||0 ≤ max{|xj | : j = 1, ..., d} exp(d · t − t2) → 0 as t → ∞, i.e. every

solution is asymptotically equivalent to the zero solution.

On the other hand, for any ε > 0 and t1 > 0 choose an integer number d1 > (− log ε+ t21)/t1.

Then we have

||W (0, εed1)||0 = ε;

||W (t1, εed1)||0 = ε exp(d1t1 − t21) > ε exp(− log ε+ t21 − t21) = 1,

i.e. the zero solution is not stable.
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Example 3.2. 1-spaces: Considered the non-linear differential equation (Λ = R0,Φ = Z =

R)
w′(t) = P (w(t)), t ∈ R0 (2)

where P (w) is a polynomial with coefficients in R. Here d∗ = 0,Φ′ (Definition 2.4) is equivalent

to the set of all stable real roots of P (w); Φ∗ (Definition 4) is equivalent to the set of all real

roots of P (w), (PARD(1 ↘ 0)).

Example 3.3. (The Floquet-Lyapunov theory). N-spaces, Λ = R0. Some types of linear

autonomous and periodical dynamical systems have finite or countable sets of characteristic

values {µ1, µ2, ...} which can be semi-ordered: (Re(µ1) ≥ Re(µ2) ≥ ...}); (if such set is infinite

then lim{Re(µk) : k → ∞} = −∞) such that functions exp(µkt) (and for multiple values

functions exp(µkt)t
pk , pk ∈ N) are (components of) partial solutions.

If (∀φ ∈ Φ)(∃{ck} ⊂ Z)(W (t, φ) = Σkck exp(µkt)t
pk) then: if Re(µ1) > 0 then the system is

conditionally stable and if, additionally, (∃k)(Re(µk) < 0) then PARD(−Reµk) occurs.

If there are some µ2, µ3, ... with ...0 > Re(µ2) > Re(µ3) > ... then multiple

PARD...−Re(µ2),−Re(µ3),... occurs.

4. Special properties of delay differential equations

Since the 1950s some properties of solutions of initial value problems for differential equations

with small delay were discovered and investigated. These properties had not analogs in other

classes of dynamical systems.

One of the first publications was [6]. Reviews of results obtained in the 1970s are in [4] and

[5]. A review of next results is in [7]. We propose to extend the discovered phenomena to wide

classes of equations.

Considered d-spaces. Here h > 0 (the upper boundary for delay), Λ = Rh, Z = Rd,Φ =

C([−h, 0] → Z). Peculiarity of the properties of special solutions is that conditions on coefficients

of equations are not on signs of corresponding characteristic values (as in Example 3.2) but on

boundaries for coefficients.

We arrange the problems in enhancing order and extend them for N-spaces.

P1) Are the solutions W (t, const) ”slowly-varying”?

((∃λ1 > 0)(∀t1, t2 ∈ Λ)(||W (t1, const)|| ≥ ||W (t2, const)|| exp(−λ1|t1 − t2|))?
If they are then they are named special ones).

We also propose to call the set of initial values for special solutions (a subset of Φ) a special

set and consider it as a self-standing object (see Definition 5.1 below).

P2) Does the equation have a unique solution for γ

W (t, γ) = W (t, φ(·)) (3)

for any t ∈ Λ and φ ∈ Φ?

If it has then denote the solution as Γ(t, φ(·)); special solutions are said to be representative.

P3) Does Γ∗(φ(·)) := lim{Γ(t, φ(·)) : t → ∞} exist?

If it is so then special solutions are said to be approximating.

P4) Does the difference (W (t, φ(·))−W (t,Γ∗(φ(·))) tend to zero?

If it does then special solutions are said to be asymptotically approximating; if ||W (t, const)||
does not decrease then PARD(∞ ↘ d) occurs.

P5) Is it true: ((∃λ2 > λ1)(∀φ ∈ Φ)(∃γ > 0)(||(W (t, φ(·))−W (t,Γ∗(φ(·))|| ≤ γ exp(−λ2t))?

If it is so then special solutions are said to be λ2-asymptotically approximating; if ||W (t, const)||
does not decrease then PARDλ2(∞ ↘ d) occurs.



248 TWMS J. PURE APPL. MATH., V.12, N.2, 2021

We will demonstrate obtained results by a scalar linear differential equation with constant

delay (Λ = Rh, Z = R,Φ = C[−h, 0],)

w′(t) = p(t)w(t− h), t ∈ R0; p(t) ∈ C(R0); (∀t ∈ R0)(p(t) ∈ [p−, p+]) (4)

with the initial condition

w(t) = φ(t) ∈ C[−h, 0], t ∈ [−h, 0]. (5)

Theorem 4.1. [5]. Denote p0 := |[p−, p+]|. If

∆ := p0h < e−1 = 0.367... (6)

(an absolute, dimensionless exact constant) then P1)-P5) occurs for solutions of the initial value

problem (4)-(5); 0 < λ1 < λ2 are solutions of the equation λ = p0 exp(λh).

We enlarged this result for an absolute domain in the two-dimensional space {p−h, p+h} (see

Section 6 below).

We extended this theory (see the next section).

5. A class of difference equations with special solutions

In this section we describe a class of operator-difference equations with PARDλ. Here Λ = N0.

Let Φ = Z be a N -space. Considered the equation

w0 ∈ Φ; wn+1 = Fnwn, n ∈ N0 (7)

where Fn : Φ → Φ are linear operators.

We will extend operators to sets (with same notations).

Definition 5.1. A connected closed set Φz ⊂ Φ \ {0} is said to be a special initial set for the

family of operators {Fn} (for the equation (7)) if (∃q− > 0)(∀n ∈ N0)(FnΦz ⊂ q−Φz).

Lemma 5.1. For a special initial set Φz there exist such solutions {Zn : n ∈ N0} of (7) that

(∀n ∈ N0)(Zn ∈ qn−Φz).

Proof. Choose the initial value Z0 ∈ Φz. By induction, due to linearity we have:

Z1 = F0Z0 ⊂ F0Φz ⊂ q−Φz;

Z2 = F1Z1 ⊂ F1(q−Φz) = q−F1Φz ⊂ q−q−Φz = q2−Φz, etc. The lemma is proven by induction.

We will call such solutions (together with the zero solution) special ones.

We proposed the following construction of splitting the space ([9, 10] [ briefly). Introduce a

linear projectional operator P : Φ → Φ, denote Q := I −P (also a linear projectional operator),

Φx is the kernel of P, Φy is the image of P . (A subscript x or y will denote restriction of a linear

operator defined on Φ to the subspace Φx or Φy and the corresponding norm.)

Denote variables xn := Pzn ∈ Φx; yn := Qzn ∈ Φy and operators

an := PFxn : Φx → Φx; bn := PFyn : Φy → Φx; cn := QFxn : Φx → Φy; dn := QFyn : Φy → Φy.

Thus we obtain an initial value problem for a system

x0 ∈ Φx, y0 ∈ Φy; xn+1 = anxn + bnyn, yn+1 = cnxn + dnyn, n ∈ N0. (8)

To formulate theorems denote the sets of operators (they are assumed to be bounded):

(∀n ∈ N0)(an ∈ A; bn ∈ B; cn ∈ C; dn ∈ D).

We will use the denotation ||H||− for a lower bound of a linear operator H : ||Hx|| ≥
||H||−||x||.

Theorem 5.1. If there exists such number η > 0 that

1) q− := ||A||x− − η||B||x > 0; 2)||C||y + η||D||y ≤ ηq−
then the set Φz = {(x, y) ∈ Φx × Φy : ||x||x ≥ 1; ||y||y ≤ η||x||x} is a special initial set for the

system (8).
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Proof. Let (x, y) ∈ Φz. Then we have for any n the estimation from below

||Fnx||x ≥ ||Ax||x − ||By||x ≥ ||A||x−||x||x − ||B||x||y||y ≥ ||A||x−||x||x − η||B||x||x||x =

= (||A||x− − η||B||x)||x||x = q−||x||x
and the estimation

||Fny||y ≤ ||Cx||y + ||Dy||y ≤ ||C||y||x||x + ||D||y||y||y ≤ ||C||y||x||x + η||D||y||x||x =

= (||C||y + η||D||y)||x||x ≤ ηq−||x||x.
Hence, ||Fny||y/||Fnx||x ≤ η. It means that (Fnx, Fny) ∈ q−Φz.

The theorem is proven.

Corollary 5.1. The solution {(Xn, Yn) : n ∈ N0} of the system (8) with initial condition

Xn ̸= 0, Y0 = 0 meets the conditions (∀n ∈ N)(||Xn||x ≥ qn−||X0||x; ||Yn||y ≤ η||Xn||x). As above,

we will name solutions special.

Let Φ1 = R. Then an are real numbers. We consider interval notations and restrictions on

coefficients: let

(∀n ∈ N0)(an ∈ [a−, a+]; ||bn||x ≤ b+ > 0; ||cn||y ≤ c+ > 0; ||dn||y ≤ d+ > 0). (9)

It is seen that the product β = b+c+ is constant under linear variable substitution of y.

Hence, we can pass to dimensionless variables, without loss of generality b+ = 1 and we obtain

the following corollary from Theorem 5.1.:

Theorem 5.2.. If Φx = R and there exists such number ξ > 0 that

1) q− := a− − ξ > 0; 2) β + ξd+ ≤ ξq−
then the set Φz = {(x, y) ∈ R × Φ2 : x ≥ 1; ||y||y ≤ ξx} is a special initial set; the space

of corresponding special solutions of the system (8) is one-dimensional with the basic solution

{(Xn, Yn) : n ∈ N0} meeting the following conditions:

X0 := 1;Y0 = 0; (∀n ∈ N)(Xn ≥ qn−; ||Yn||y ≤ ξXn). (10)

The following theorem provides sufficient conditions for the properties listed in Section 3.

Considered the system (8)-(9). Let {(xn, yn) : n ∈ N0} be an arbitrary solution of (8) with

initial values (x0, y0).

Theorem 5.3.

1) If a− − d+ > 2
√
β then the conditions of Theorem 5.2. are satisfied and one may take

ξ =
(
a− − d+ −

√
(a− − d+)2 − 4β

)
/2;

q− =
(
a− + d+ +

√
(a− − d+)2 − 4β

)
/2;

P1) the basic special solution (10) exists and P2) it is representative by the first component:

Γk(x0, y0) = xk/Xk.

2) If, additionally, ω := (a+d+ + β)q−2
− < 1 then

P3) the solution (10) is approximating by the first component: there exists a limit

Γ∗(x0, y0) := lim{Γk(x0, y0) : k → ∞};
3) If, additionally, ω1 := ω(a+ + ξ) < 1 then

P4) the solution (10) is asymptotically approximating by the first component:

lim{xn − Γ∗(x0, y0)Xn : n → ∞} = 0.

Proof. Denote ζ :=
√

(a− − d+)2 − 4β and calculate

β+ξd+−ξq− = β+(a−−d+−ζ)/2·(d+−(a−+d++ζ)/2) = β−(a−−d+−ζ)(a−−d++ζ)/4 =

β − ((a− − d+)
2 − ζ2)/4 = 0.

Hence, the numbers ξ and q− fulfil the equality β+ξd+ = ξq−. The conditions of Theorem 5.2.

are satisfied, the basic special solution (10) exists. For any k we have Γk(x0, y0)(Xn, Yn)|n=k =

xk/Xk · (Xk, Yk) = (xk, xk/Xk · Yk). Statement 1) is proven.
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Proof of statement 2). Denote Ωn := andn−cnbn : Φy → Φy. Transform (Casorati determinant

into discrete analog of Wronskian determinant):

|Γn+1(x0, y0)− Γn(x0, y0)| = |xn+1/Xn+1 − xn/Xn| = |xn+1Xn − xnXn+1|/(Xn+1Xn) =

= |bn(Xnyn − xnYn)|/(Xn+1Xn) = |bnΠn−1
k=0Ωk(X0y0 − x0Y0)|/(Xn+1Xn). (11)

We have for all n ∈ N0: ||Ωn||y ≤ ||andn||y + ||cnbn||y ≤ a+d+ + β = ωq2−. The equality (11)

yields the following estimation (const stand for constants that do not depend on n):

|Γn+1(x0, y0)−Γn(x0, y0)| ≤ ||bn||xΠn−1
k=0 ||Ωk||·||y0||2/(Xn+1Xn) ≤ b+||y0||y(ωq2−)n/(Xn+1Xn) ≤

const · (ωq2−)n/(qn+1
− qn−) = const1 · ωn.

Hence, the sequence {Γn(x0, y0) : n ∈ N} converges and has a limit Γ∗(x0, y0). By the known

estimation, |Γ∗(x0, y0)− Γn(x0, y0)| ≤ const1 · ωn/(1− ω).

Statement 2) is proven.

Proof of statement 3). Estimate Xn+1 = anXn + bnYn ≤ a+Xn + b||Yn||y ≤ (a+ + ξ)Xn.

Hence, (∀n ∈ N)(Xn ≤ (a+ + ξ)n).

|xn − Γ∗(x0, y0)Xn| = |xn/Xn − Γ∗(x0, y0)|Xn ≤
|Γn(x0, y0)− Γ∗(x0, y0)|(a+ + ξ)n ≤ const2 · ωn(a+ + ξ)n = const2 · ωn

1

tends to zero as n → ∞.

Statement 3) is proven.

The theorem is proven.

The condition 1) in Theorem 5.2. is close to necessary one. Consider the system in R2 with

constant coefficients:

xn+1 = a−xn − yn, yn+1 = βxn + d+yn, n ∈ N0,

the characteristic equation is λ2 − (a− + d+)λ+ a−d+ β = 0.

If a−−d+ < 2
√
β then (a−+d+)

2−4(a−d++β) = (a−−d+)
2−4β < 0 and the characteristic

numbers are complex. Hence, all non-zero solutions of the system are oscillating and special

solutions absent.

The conditions of the Theorem 5.2. are not easy to verify precisely. However, by means

of a computer program, we have obtained the following result numerically. The program with

directed rounding was written in PASCAL.

Theorem 5.4. If 0.9 ≤ an ≤ 1.9, bc ≤ 0.06, d ≤ 0.3 then P1)-P2); if 0.9 ≤ an ≤ 1.7 then P3);

if 0.9 ≤ an ≤ 1.2 then P4) (by the first argument).

6. Improving of results on delay differential equations

In this section we apply Theorem 5.2. to the delay differential equation (4). We have ascer-

tained that the condition of ”small delay” for linear delay differential equations of type (4) and

more general ones corresponds to the conditions ”the interval [a−, a+] is close to 1; the positive

numbers b+c+ and d+ are small” for coefficients in (9).

We see that w′(t) exists for t ≥ 0, hence without loss of generality we assume that φ ∈
C1[−h, 0] in (5).

The shift operator for the equation (4)

Sw(·)(t) := w(0) +

t∫
−h

p(s)w(s)ds, t ∈ [−h, 0] (12)
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with corresponding shifts of the argument yields the solution w(t) consequently on intervals

[0, h], [h, 2h], ... The forthcoming transformations and notations are also valid for shifts of the

argument.

Split the space Φ := C1[−h, 0] = R × Φ2 ∋ w = w(0) + (w(t) − w(0)) ≡ x + y(t); y(0) = 0.

Let Φ2 be the set of functions {y(t) ∈ C1[−h, 0] : y(0) = 0} with the norm ||y||2 := sup{|y′(t)| :
t ∈ [−h, 0]}, then |y(t)| ≤ ||y||2|t|.

The shift operator (12) can also be splitted:

S(x+ y(·))(t) := x(0) +

0∫
−h

p(s)(x+ y(s))ds+

t∫
0

p(s)(x+ y(s))ds.

Denoting operators on each segment of length h we obtain:

ãx := (1 +

0∫
−h

p(s)ds)x : R → R; b̃y(·) :=
0∫

−h

p(s)y(s)ds : Φ2 → R;

(c̃x)(t) :=

t∫
0

p(s)ds x : R → Φ2; (d̃y(·))(t) :=
t∫

0

p(s)y(s)ds : Φ2 → Φ2.

Thus, the equation (4) can be written in the form (8).

Estimating these integrals we obtain for constants in (9)

a− = 1−∆; a+ = 1 +∆; b+ = ∆h/2; c+ = p0; d+ = ∆/2, β = ∆2/2.

Substituting these estimations in Theorem 5 by means of a computer program with directed

rounding in PASCAL we have proven

Theorem 6.1. If ∆ < 0.343 then the condition 1) of Theorem 5.2. fulfils; If ∆ < 0.327 then

the condition 2) fulfils; If ∆ < 0.304 then the condition 3) fulfils.

These results illustrate that the method of Section 5 can be applied to delay differential

equations. The results of Theorem 6.1. are similar to ones of [6] but are weaker than the exact

one (6).

This method can also yield better results.

Denote ∆− := p−h,∆+ := p+h. Then we obtain for constants in (9)

a− = 1 +∆−; a+ = 1 +∆+; b+ = ∆+h/2; c+ = p+; d+ = ∆+/2, β = ∆2
+/2.

Substituting in Theorem 5 by means of a computer program with directed rounding in PASCAL

we have proven

Theorem 6.2. If either −0.05 ≤ p(t)h ≤ 0.42 or −0.040 ≤ p(t)h ≤ 0.43 or −0.01 ≤ p(t)h ≤
0.44 then special solutions of the equation (4) exist and are asymptotically approximating.

These results present any absolute domain and enlarge the domain (6) for coefficients of delay

differential equations providing special properties.

7. Conclusion

The paper demonstrates that many results on asymptotic behavior of solutions to dynamic

systems can be stated uniformly by means of the new notions ”asymptotic equivalence” and

”asymptotic reduction of solution space dimension”. The new method of splitting spaces pro-

vides extension of the phenomenon of special solutions onto large classes of operator difference

equations and obtaining new results for delay differential equations.



252 TWMS J. PURE APPL. MATH., V.12, N.2, 2021

References

[1] Giunti, M., Mazzola, C., (2012), Dynamical systems on monoids: Toward a general theory of determin-

istic systems and motion. In: Methods, models, simulations and approaches towards a general theory of

change.Singapore: World Scientific, pp. 173-185.

[2] Levinson, N., (1946), The asymptotic behavior of system of linear differential equations, Am.J.Math., 68,

pp.1-6.

[3] Lyapunov, A.M., (1892), The General Problem on Stability of Motion, Kharkov(in Russian), 250p.

[4] Myshkis, A.D., (1972), Linear differential equations with delayed argument (in Russian), Nauka, Moscow,

352p.

[5] Pankov, P.S., (1972), Asymptotical finite dimenstionality of the space of solutions of a certain class of systems

with lag (in Russian), Differ. Urav., 13(4), pp.455-462.

[6] Ryabov, Yu. A., (1965), Certain asymptotic properties of linear systems with small time lag, Trudy Sem.

Teor. Diff. Druzhby Narodov Patrisa Lumumby, 3, pp.153-165.

[7] Shangbing, Ai, (1992), Asymptotic integration of delay differential system. J. Math. Anal. Appl., 165(1),

pp.71-101.

[8] Shirinov, T.V., Sharifov, Ya.A., (2006), Numerical method for the decision of systems of the hyperbolic

equations with integrated conditions, Baku University News, 1, pp.33-40, (in Russian).

[9] Zheentaeva, Zh.K., (2015), Investigation of asymptotics of solutions of difference equations with variable

coefficients. Abstracts of the Issyk-Kul International Mathematical Forum, Bishkek, Kyrgyz Mathematical

Society, 36p.

[10] Zheentaeva Zh.K., (2017), Investigation of asymptotic of solutions of equations with small delay (in Russian),

Lap Lambert Academic Publishing, Saarbrücken.

[11] Zheentaeva Zh.K., (2018), Expansion of class of differential equations with special solutions with periodical

coefficients (in Russian), Herald of Institute of Mathematics of KR NAS, 1, pp.144-151.

Pavel Pankov is the head of laboratory of com-

puting mathematics of the Institute of Mathe-

matics of National Academy of Sciences, doctor

of physical-mathematical sciences, professor, cor-

responding member of National Academy of Sci-

ences. His research interests include the following

fields: new effects and phenomena in the theory

of dynamical systems, applying computers to find

and prove new mathematical results, interactive

presentation of mathematical objects.

Zhumagul Zheentaeva is a manager of chair of

Kyrgyz-Uzbek University, candidate of physical-

mathematical sciences. Her research interests are

asymptotic methods in the general theory of dy-

namical systems and in the theory of delay differ-

ential equations.



P.S. PANKOV, et al.: ASYMPTOTIC REDUCTION OF SOLUTION ... 253

Taleh Shirinov was born in 1963. He gradu-

ated from Baku State University in 1986. He re-

ceived Ph.D. degree in 2007. Since 2019, he is the

Dean of the ”Information and Telecommunication

Technologies” Faculty of the Azerbaijan Techni-

cal University. His research interests include com-

putational methods in programming technologies,

number theory and cryptography, modern prob-

lems of computer science, numerical methods of

optimization.


